Trong hình học không gian Oxyz, ta có nhiều cách để tính được khoảng cách từ điểm đến mặt phẳng. Tuy nhiên, nếu đề cho biết tọa độ 1 điểm và phương trình 1 mặt phẳng thì ta nên dùng công thức dưới đây sẽ cho kết quả nhanh và chính xác.
Bạn đang xem: Khoảng cách từ điểm đến mặt phẳng oxyz

Cơ sở lý thuyết
Trong không gian Oxyz có điểm P(a; b; c) không thuộc mặt phẳng (α), biết rằng mặt phẳng này có phương trình (α): Ax + By + Cz + D = 0. Để tính khoảng cách từ điểm P(a; b; c) tới mặt phẳng (α) ta sử dụng công thức:
d(P, (α)) = $\frac{{\left| {a.A + b.B + c.C + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}$
Bài tập có lời giải
Bài tập 1.Trong không gian có mặt phẳng (α): x – 2y + 3z – 4 = 0. Hãy tìm khoảng cách từ P(1; 1; 1) tới mặt phẳng (α)?
Hướng dẫn giải
Áp dụng công thức tính khoảng cách ở trên: d(P, (α)) = $\frac{{\left| {1.1 + 1.\left( { – 2} \right) + 1.\left( 3 \right) – 4} \right|}}{{\sqrt {{1^2} + {{\left( { – 2} \right)}^2} + {3^2}} }} = \frac{{\sqrt {14} }}{7}$
Kết luận: d(P, (α)) = $\frac{{\sqrt {14} }}{7}$
Bài tập 2. Cho mặt phẳng (α): x + y + z – 9 = 0. Một điểm P nằm trên trục tọa độ Oz thuộc hệ trục Oxyz, cách (α) là 5. Hãy tìm tọa độ của M?
Vì P thuộc Oz nên nó có tọa độ là P( 0; 0; z).
Theo công thức khoảng cách ở trên: d(P, (α)) = 5
$5 = \frac{{\left| {1.0 + 1.0 + 1.z – 9} \right|}}{{\sqrt {{1^2} + {1^2} + {1^2}} }} \Leftrightarrow z = 5\sqrt 3 + 9$
Kế luận: P( 0; 0; $5\sqrt 3 + 9$)
Bài tập 3. Hãy tính khoảng cách từ gốc tọa độ O của hệ trục Oxyz tới mặt phẳng (Q): 2x – 3y – 5z + 2 = 0
Hướng dẫn giải
Gốc tọa độ của hệ trục Oxyz có tọa độ O(0; 0; 0)
Áp dụng công thức tính khoảng cách ở trên: d(O, (Q)) = $\frac{{\left| {2.0 + \left( { – 3} \right).0 + \left( { – 5} \right).0 + 2} \right|}}{{\sqrt {{2^2} + {{\left( { – 3} \right)}^2} + {{\left( { – 5} \right)}^2}} }} = \frac{{\sqrt {38} }}{{19}}$
Bài tập 4. Một mặt phẳng (α): – x + 2y + 3z – 4 = 0. Biết khoảng cách từ mp (α) tới P thuộc trục Ox là 2. Hãy xác định tọa độ điểm P.
Hướng dẫn giải
Vì P thuộc Ox nên nó có tọa độ P(x; 0; 0)
Theo đề bài: d(P, (α)) = 2
Áp dụng công thức tính khoảng cách: 2 = $\frac{{\left| {\left( { – 1} \right).x + 2.0 + 3.0 – 4} \right|}}{{\sqrt {{{\left( { – 1} \right)}^2} + {2^2} + {3^2}} }} \Leftrightarrow x = 2\sqrt {14} – 4$
Vậy P( $2\sqrt {14} – 4$; 0; 0)
Bài viết khoảng cách từ 1 điểm đến mặt phẳng tạm dừng ở đây. Với mong muốn mỗi bài viết sẽ giúp bạn hiểu và vận dụng thành thạo công thức nên nếu còn thắc mắc hay góp ý hãy để lại và thosanlinhhon.vn sẽ giúp bạn giải quyết.
Xem thêm: " Kinh Tế Học Tiếng Anh Là Gì ? Mục Đích Nghiên Cứu Nền Kinh Tế Thế Giới Trong Tiếng Anh Là Gì
Previous Post
Next Post
About The Author

Toán Học
Add a Comment Hủy
Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *
Name
Website
Lưu tên của tôi, email, và trang web trong trình duyệt này cho lần bình luận kế tiếp của tôi.
Bài viết mới
Phản hồi gần đây
Chuyên mục
Bài viết mới
Proudly powered by WordPress
RedWaves theme by Themient
Menu
Search for